4.4 Article

Hypoxia-responsive signaling regulates the apoptosis-dependent remodeling of the embryonic avian cardiac outflow tract

Journal

DEVELOPMENTAL BIOLOGY
Volume 273, Issue 2, Pages 285-296

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2004.05.036

Keywords

akt; apoptosis; Flk-1/KDR; heart; hypoxia-inducible factor; vascular endothelial growth factor; remodeling

Funding

  1. NHLBI NIH HHS [1R01 HL 65314-01] Funding Source: Medline

Ask authors/readers for more resources

We proposed a model in which myocardial hypoxia triggers the apoptosis-dependent remodeling of the avian outflow tract (OFT) in the transition of the embryo to a dual circulation. In this study, we examined hypoxia-dependent signaling in cardiomyocyte apoptosis and outflow tract remodeling. The hypoxia-inducible transcription factor HIF-1alpha was specifically present in the nuclei of OFT cardiomyocytes from stages 25-32, the period of hypoxia-dependent OFT remodeling. HIF-1alpha expression was sensitive to changes in ambient oxygen concentrations, while its dimerization partner HIF-1beta was constitutively expressed. There was not a simple relationship between HIF-1alpha expression and apoptosis. Apoptotic cardiomyocytes were detected in HIF-1alpha-positive and -negative regions, and a hypoxic stimulus sufficient to induce nuclear accumulation of HIF-1alpha did not induce cardiomyocyte apoptosis. The hypoxia-dependent expression of the vascular endothelial growth factor receptor (VEGFR2) in the distal OFT myocardium may be protective as cardiomyocyte apoptosis in the early stages (25-30) of OFT remodeling was absent from this region. Furthermore, recombinant adenoviral-mediated expression of dominant negative Akt, an inhibitor of tyrosine kinase receptor signaling, augmented cardiomyocyte apoptosis in the OFT and constitutively active Akt suppressed it. Adenovirus-mediated forced expression of VEGF 165 induced conotruncal malformation such as double outlet right ventricle (DORV) and ventricular septal defect (VSD), similar to defects observed when apoptosis-dependent remodeling of the OFT was specifically targeted. We conclude that normal developmental remodeling of the embryonic avian cardiac OFT involves hypoxia/HIF-1-dependent signaling and cardiomyocyte apoptosis. Autocrine signaling through VEGF/VEGFR2 and Akt provides survival signals for the hypoxic OFT cardiomyocytes, and regulated VEGF signaling is required for the normal development of the OFT. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available