4.5 Article

Caenorhabditis elegans triple null mutant lacking UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β1,2-N-acetylglucosaminyltransferase I

Journal

BIOCHEMICAL JOURNAL
Volume 382, Issue -, Pages 995-1001

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20040793

Keywords

Caenorhabditis elegans; N-acetylglucosaminyltransferase I; null mutations; mass spectrometry (MS); N-glycan biosynthesis; paucimannose N-glycans

Funding

  1. NCRR NIH HHS [P20 RR016459, P20 RR16459] Funding Source: Medline

Ask authors/readers for more resources

We have previously reported, from the nematode worm Caenorhabditis elegans, three genes (gly-12, gly-13 and gly-14) encoding enzymically active UDP-N-acetyl-D-glucosamine:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (GnT I), an enzyme essential for hybrid, paucimannose and complex N-glycan synthesis. We now describe a worm with null mutations in all three GnT I genes, gly-14 (III);gly-12 gly-13 (X) (III and X refer to the chromosome number). The triple-knock-out (TKO) worms have a normal phenotype, although they do not express GnT I activity and do not synthesize 31 paucimannose, complex and fucosylated oligomannose N-glycans present in the wildtype worm. The TKO worm has increased amounts of non-fucosylated oligomannose N-glycan structures, a finding consistent with the site of GnT I action. Five fucosylated oligomannose N-glycan structures were observed in TKO, but not wild-type, worms, indicating the presence of unusual GnT I-independent fucosyltransferases. It is concluded that wild-type C. elegans makes a large number of GnT I-dependent N-glycans that are not essential for normal worm development under laboratory conditions. The TKO worm may be more susceptible to mutations in other genes, thereby providing an approach for the identification of genes that interact with GnT I.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available