4.6 Article

Genetic deletion of glycogen synthase kinase-3β abrogates activation of IκBα kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 38, Pages 39541-39554

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M403449200

Keywords

-

Funding

  1. NCI NIH HHS [P01 CA91844, P50CA97007] Funding Source: Medline

Ask authors/readers for more resources

Glycogen synthase kinase (GSK)-3beta is a constitutively active, proline-directed serine/threonine kinase that controls growth modulation and tumorigenesis through multiple intracellular signaling pathways. How GSK-3beta regulates signaling pathways induced by cytokines such as tumor necrosis factor (TNF) is poorly understood. In this study, we used fibroblasts derived from GSK-3beta gene-deleted mice to understand the role of this kinase in TNF signaling. TNF induced NF-kappaB activation as measured by DNA binding in wild-type mouse embryonic fibroblasts, but deletion of GSK-3beta abolished this activation. This inhibition was due to suppression of IkappaBalpha kinase activation and IkappaBalpha phosphorylation, ubiquitination, and degradation. TNF-induced NF-kappaB reporter gene transcription was also suppressed in GSK-3beta gene-deleted cells. NF-kappaB activation induced by lipopolysaccharide, interleukin-1beta, or cigarette smoke condensate was completely suppressed in GSK-3beta(-/-) cells. Deletion of GSK-3beta also abolished TNF-induced c-Jun N-terminal kinase and p44/p42 mitogen-activated kinase activation. Most surprisingly, TNF-induced Akt activation also required the presence of GSK-3beta. TNF induced expression of the NF-kappaB-regulated gene products cyclin D1, COX-2, MMP-9, survivin, IAP 1, IAP 2, Bcl-x(L), Bfl-1/A1, TRAF1, and FLIP in wild-type mouse embryonic fibroblasts but not in GSK-3beta(-/-) cells, and this correlated with potentiation of TNF-induced apoptosis as indicated by cell viability, annexin V staining, and caspase activation. Overall, our results indicate that GSK-3beta plays a critical role in TNF signaling and in the signaling of other inflammatory stimuli and that its suppression can be exploited as a potential target to inhibit angiogenesis, proliferation, and survival of tumor cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available