4.6 Article

Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity.

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 38, Pages 39340-39347

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M405150200

Keywords

-

Ask authors/readers for more resources

The Des pathway of Bacillus subtilis regulates the synthesis of the cold-shock induced membrane-bound enzyme Delta5-fatty acid desaturase (Delta5-Des). A central component of the Des pathway is the response regulator, DesR, which is activated by a membrane-associated kinase, DesK, in response to a decrease in membrane lipid fluidity. Despite genetic and biochemical studies, specific details of the interaction between DesR and the DNA remain unknown. In this study we show that only the phosphorylated form of protein DesR is able to bind to a regulatory region immediately upstream of the promoter of the Delta5-Des gene (Pdes). Phosphorylation of the regulatory domain of dimeric DesR promotes, in a cooperative fashion, the hierarchical occupation of two adjacent, non-identical, DesR-P DNA binding sites, so that there is a shift in the equilibrium toward the tetrameric active form of the response regulator. Subsequently, this phosphorylation signal propagation leads to the activation of the des gene through recruitment of RNA polymerase to Pdes. This is the first dissected example of a transcription factor functioning as a phosphorylation-activated switch for a cold-shock gene, allowing the cell to optimize the fluidity of membrane phospholipids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available