4.7 Article

Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 499, Issue 1-2, Pages 45-51

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2004.07.098

Keywords

antiarrhythmic drug; organic cation transporter; transport; quinidine; lidocaine

Ask authors/readers for more resources

Antiarrhythmic drugs have been considered to be transported by the organic cation transport system. The purpose of this study was to elucidate the molecular mechanism underlying the transport of antiarrhythmic drugs using cells from the second segment of the proximal tubule (S-2) cells of mice expressing human-organic cation transporter 3 (S-2 human-OCT3). The antiarrhythmic drugs tested were cibenzoline, disopyramide, lidocaine, mexiletine, phenytoin, pilsicanide, procainamide and quinidine. Human-OCT3 mediated a time- and dose-dependent uptake of quinidine and lidocaine, with k(m) values of 216 and 139 muM, respectively. Human-OCT3 also mediated the uptake of disopyramide and procainamide but not that of phenytoin. All antiarrhythmic drugs tested inhibited histamine uptake mediated by human-OCT3 in a dose-dependent manner. The IC50 values of antiarrhythmic drugs for human-OCT3 ranged between 0.75 and 656 muM. Kinetic analysis revealed that disopyramide, lidocaine, procainamide and quinidine inhibited histamine uptake mediated by human-OCT3 in a competitive manner. In conclusion, these results suggest that human-OCT3 mediates the transport of antiarrhythmic drugs, which may be the mechanism underlying the distribution and the elimination of these drugs. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available