4.6 Article

Molecular structure of proline

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 10, Issue 18, Pages 4512-4517

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200400112

Keywords

ab initio calculations; conformation analysis; quartic force field; spectroscopic constants; structural refinement

Ask authors/readers for more resources

The molecular structures of the two lowest-energy conformers of proline, Pro-I and Pro-II, have been characterized by ab initio electronic structure computations. An extensive MP2/6-31G* quartic force field for Pro-I, containing 62835 unique elements in the internal coordinate space, was computed to account for anharmonic vibrational effects, including total zero-point contributions to isotopomeric rotational constants. New r(e) and improved r(0) least-squares structural refinements were performed to determine the heavy-atom framework of Pro-I, based on experimentally measured (A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J. C. Lopez, J. L. Alonso, Angew. Chem. 2002, 114, 4867; Angew. Chem. Int. Ed. 2002, 41, 4673) rotational constant sets of nine isotopomers and our ab initio data for structural constraints and zero-point vibrational (ZPV) shifts. Without the ab initio constraints, even the extensive set of empirical rotational constants cannot satisfactorily fix the molecular structure of the most stable conformer of proline, a 17-atom molecule with no symmetry. After imposing the ab initio constraints, excellent agreement between theory and experiment is found for the heavy-atom geometric framework, the root-mean-square (rms) residual of the empirical rotational constant fit being cut in half by adding ZPV corrections. The most significant disparity, about 0.07 Angstrom , between the empirical and the best ab initio structures, concerns the r(N...H) distance of the intramolecular hydrogen bond. Some of the experimental quartic centrifugal distortion constants assigned to Pro-II have been corrected based on data obtained from a theoretical force field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available