4.6 Article

Self-interacting domains in the C terminus of a cation-Cl- cotransporter described for the first time

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 39, Pages 40769-40777

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M406458200

Keywords

-

Ask authors/readers for more resources

The first isoform of the Na+-K+-Cl- cotransporter (NKCC1), a widely distributed member of the cation-Cl- cotransporter superfamily, plays key roles in many physiological processes by regulating the ion and water content of animal cells and by sustaining electrolyte secretion across various epithelia. Indirect studies have led to the prediction that NKCC1 operates as a dimer assembled through binding domains that are distal to the amino portion of the carrier. In this study, evidence is presented that NKCC1 possesses self-interacting properties that result in the formation of a large complex between the proximal and the distal segment of the cytosolic C terminus. Elaborate mapping studies of these segments showed that the contact sites are dispersed along the entire C terminus, and they also led to the identification of a critical interacting residue that belongs to a putative forkhead-associated binding domain. In conjunction with previous findings, our results indicate that the uncovered interacting domains are probably a major determinant of the NKCC1 conformational landscape and assembly into a high order structure. A model is proposed in which the carrier could alternate between monomeric and homo-oligomeric units via chemical-or ligand-dependent changes in conformational dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available