4.2 Article

Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate

Journal

MICROBIOLOGY-SGM
Volume 150, Issue -, Pages 3429-3440

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.27193-0

Keywords

-

Categories

Ask authors/readers for more resources

A thermophilic terephthalate-degrading methanogenic consortium was successfully enriched for 272 days in an anaerobic hybrid reactor, and the microbial structure was characterized using terminal RFLPs, clone libraries and fluorescence in-situ hybridization with rRNA-targeted oligonucleotide probes. All the results suggested that Methanothrix thermophila-related methanogens, Desulfotomaculum-related bacterial populations in the Gram-positive low-G + C group, and OP5-related populations were the key members responsible for terephthalate degradation under thermophilic methanogenic conditions except during periods when the reactor experienced heat shock and pump failure. These perturbations caused a significant shift in bacterial population structure in sludge samples taken from the sludge bed but not from the surface of the packing materials. After system recovery, many other bacterial populations emerged, which belonged mainly to the Gram-positive low-G + C group and Cytophaga-Flexibacter-Bacteroides, as well as beta-Proteobacteria, Planctomycetes and Nitrospira. These newly emerged populations were probably also capable of degrading terephthalate in the hybrid system, but were out-competed by those bacterial populations before perturbations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available