4.5 Article

Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 41, Issue 5, Pages 787-795

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/T04-022

Keywords

permeability; sand; prediction; porosity; gradation curve

Ask authors/readers for more resources

This paper assesses methods to predict the saturated hydraulic conductivity, k, of clean sand and gravel. Currently, in engineering, the most widely used predictive methods are those of Hazen and the Naval Facilities Engineering Command (NAVFAC). This paper shows how the Hazen equation, which is valid only for loose packing when the porosity, n, is close to its maximum value, can be extended to any value of n the soil can take when its maximum value of n is known. The resulting extended Hazen equation is compared with the single equation that summarizes the NAVFAC chart. The predictive capacity of the two equations is assessed using published laboratory data for homogenized sand and gravel specimens, with an effective diameter d(10) between 0.13 and 1.98 mm and a void ratio e between 0.4 and 1.5. A new equation is proposed, based on a best fit equation in a graph of the logarithm of measured k versus the logarithm of d(10)(2)e(3)/(1 + e). The distribution curves of the differences olog(measured k) u log(predicted k)o have mean values of u0.07, u0.21, and 0.00 for the extended Hazen, NAVFAC, and new equations, respectively, with standard deviations of 0.23, 0.36, and 0.10, respectively. Using the values of d(10) and e, the new equation predicts a k value usually between 0.5 and 2.0 times the measured k value for the considered data. It is shown that the predictive capacity of this new equation may be extended to natural nonplastic silty soils, but not to crushed soils or plastic silty soils. The paper discusses several factors affecting the inaccuracy of predictions and laboratory test results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available