4.7 Article Proceedings Paper

Characterizing errors in airborne laser altimetry data to extract soil roughness

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 42, Issue 10, Pages 2130-2141

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2004.834648

Keywords

accuracy; airborne laser allimetry; soil roughness

Ask authors/readers for more resources

Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20 cm in elevation and 40 cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data and, thus, assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50 ins apart, elevations have a local standard deviation in height of 3.5 cm, enabling the local measurement of surface roughness of the order of 5 cm. Points acquired seconds apart acquire an additional random error due to differential geographic positioning system fluctuation. Measurements made up to an hour apart show an elevation drift of 7 cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4 cm. The root mean square planimetric error in point location was derived as 37.4 cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the U.K. intertidal zone monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available