4.6 Article

Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

Journal

APPLIED PHYSICS LETTERS
Volume 102, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4801518

Keywords

-

Funding

  1. NEEDS-Materials program of CNRS

Ask authors/readers for more resources

Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (S-n) and electronic (S-e) energy losses. Rutherford backscattering experiments in channeling conditions show that the S-n/S-e cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative S-n/S-e effects may lead to the preservation of the integrity of nuclear devices. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available