4.3 Article

Selective fatigue of fast motor units after electrically elicited muscle contractions

Journal

JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY
Volume 14, Issue 5, Pages 531-538

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jelekin.2004.03.008

Keywords

motor unit; MU recruitment; rate coding; intramuscular spike analysis

Ask authors/readers for more resources

The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min low intensity intermittent exercise of either ES or voluntary contractions (VC) at 10% MVC (5-s isometric contraction and 5-s rest cycles). Both isolated intramuscular MU spikes obtained from three sets of bipolar fine-wire electrodes and surface electromyogram (EMG) were simultaneously recorded and were analyzed by means of a computer-aided intramuscular spike amplitude-frequency analysis and frequency power spectral analysis, respectively. Results indicated that mean MU spike amplitude, particularly those MUs with relatively large amplitude, was significantly reduced while those MUs with small spike amplitude increased their firing rate during the 40% MVC test contraction after the ES. This was accompanied by the increased amplitude of surface EMG (rmsEMG). However, no such significant changes in the intramuscular and surface EMGs were observed after VC. These findings indicated differential MU activation patterns in terms of MU recruitment and rate coding characteristics during ES and VC, respectively. Our data strongly suggest the possibility of an inverse size principle of MU recruitment during ES. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available