4.7 Article

Emission estimates and trends (1990-2000) for megacity Delhi and implications

Journal

ATMOSPHERIC ENVIRONMENT
Volume 38, Issue 33, Pages 5663-5681

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2004.05.057

Keywords

urban air pollution; emission inventory; atmospheric chemistry; trajectory analysis; regional-global impact

Ask authors/readers for more resources

A comprehensive emission inventory for megacity Delhi, India, for the period 1990-2000 has been developed in support of air quality, atmospheric chemistry and climate studies. It appears that SO2 and total suspended particles (TSP) are largely emitted by thermal power plants (similar to68% and similar to80%, respectively), while the transport sector contributes most to NOx, CO and non-methane volatile organic compound (NMVOC) emissions (>80%). Further, while CO2 has been largely emitted by power plants in the past (about 60% in 1990, and 48% in 2000), the contribution by the transport sector is increasing (27% in 1990 and 39% in 2000). NH3 and N2O are largely emitted from agriculture (similar to70% and similar to50%, respectively), and solid waste disposal is the main source of CH4 (similar to80%). In the past TSP abatement to improve air quality has largely focused on traffic emissions; however, our results suggest that it would be most efficient to also reduce TSP emissions by power plants. We also assessed the potential large-scale transport of the Delhi emissions based on 10-day forward trajectory calculations. The relatively strong growth of NOx emissions indicates that photochemical O-3 formation in the regional environment may be increasing substantially, in particular in the dry season. During the summer, on the other hand, convective mixing of air pollutants may reduce regional but increase large-scale, i.e. hemispheric effects. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available