4.7 Article

Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests

Journal

ENVIRONMENTAL POLLUTION
Volume 131, Issue 3, Pages 495-504

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2004.02.017

Keywords

arsenic; leaching; soil; extraction tests; iron oxides; adsorption

Ask authors/readers for more resources

Several iron-bearing additives were evaluated for their effectiveness in the attenuation of arsenic (As) in various contaminated soils. These were selected for their known or potential ability to adsorb As anions, thus changing the speciation of As in a soil system. Three soils with different sources of As contamination were investigated (canal dredgings, coal fly ash deposits, and low-level alkali waste). The amendments used were goethite (alpha-FeOOH), iron grit, iron (II) and (III) sulphates (plus lime), and lime, applied to the soils at a rate of 1% w/w. A series of leachate extraction tests (UKEA, ASTM and modified Dutch column leaching test) were conducted on the equilibrated amended soils. These were used to firstly evaluate the potential of the amendments as immobilising agents, and secondly to compare the short- and long-term durability of their effects. Column tests demonstrated the efficiency of iron oxides over the longer time scale; these treatments significantly reduced concentrations of arsenic in leachates from all treated soils. Amended soils were also observed to contain higher levels of lead (Pb) and cadmium (Cd) in their leachates, signifying that certain Fe-oxides potentially increased heavy metal mobility in treated soils. The conclusions were that whilst Fe-oxides may be used as effective in situ amendments to attenuate As in soils, their effects on other trace elements, such as Pb and Cd, require careful consideration. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available