4.6 Article

Residues Lys-149 and Glu-153 switch the aminoacylation of tRNATrp in Bacillus subtilis

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 40, Pages 41960-41965

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M401937200

Keywords

-

Ask authors/readers for more resources

Tryptophanyl-tRNA synthetase (TrpRS) consists of two identical subunits that induce the cross-subunit binding mode of tRNA(Trp). It has been shown that eubacterial and eukaryotic TrpRSs cannot efficiently cross-aminoacylate the corresponding tRNATrp. Although the identity elements in tRNA(Trp) that confer the species-specific recognition have been identified, the corresponding elements in TrpRS have not yet been reported. In this study two residues, Lys-149 and Glu-153, were identified as being crucial for the accurate recognition of tRNA(Trp). These residues reside adjacent to the binding pocket for Trp-AMP and show phylogenic diversities in the charge on their side chains between eubacteria and eukaryotes. Single mutagenesis at Lys-149 or Glu-153 reduced the activity of TrpRS in the activation of Trp. The reduction was less than that caused by the double mutant WBHA (K149D/E153R). It is unusual that E153G had no detectable activity in the activation of Trp unless tRNA(Trp) was added to the reaction. In addition, we successfully switched the species specificity of Bacillus subtilis TrpRS recognition of tRNATrp. The affinity of WBHA, K149E and E153K to human tRNA(Trp) was 31-, 13.5-, and 12.9-fold greater than that of wild type B. subtilis TrpRS, respectively. Indeed WBHA and E153K were found to prefer genuine human tRNA(Trp) to their cognate eubacteria tRNA(Trp).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available