4.5 Article

Further studies on the origins of asymmetric charge partitioning in protein homodimers

Journal

JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
Volume 15, Issue 10, Pages 1408-1415

Publisher

SPRINGER
DOI: 10.1016/j.jasms.2004.06.006

Keywords

-

Funding

  1. NIGMS NIH HHS [R01-GM64712-01, R01 GM064712] Funding Source: Medline

Ask authors/readers for more resources

Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of a-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some solution-phase information can be obtained from these gas-phase dissociation experiments. (C) 2004 American Society for Mass Spectrometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available