4.5 Article

Molecular mechanisms behind the dose-dependent differential activation of MAPK pathways induced by transforming growth factor-β1 in hematopoietic cells

Journal

STEM CELLS AND DEVELOPMENT
Volume 13, Issue 5, Pages 536-547

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2004.13.536

Keywords

-

Ask authors/readers for more resources

Transforming growth factor-beta (TGF-beta) controls a wide range of cellular responses, including cell proliferation, lineage determination, differentiation, and apoptosis, and figures prominently in animal development. It is considered as a pleiotropic factor because it can exert a positive or negative effect on various cellular processes depending on developmental stage of the target cell, its microenvironment, and also its biochemical make up. It has been shown to have a strong inhibitory effect on hematopoietic stem cell proliferation and differentiation. We have earlier shown that TGF-beta1 1 exerts a bidirectional effect on hematopoietic cell proliferation as a function of its concentration. Although it acted as an inhibitor at high concentrations, at low concentrations it stimulated the stem/progenitor cells. We also provided evidence that the differential activation of mitogen-activated protein kinase pathways was responsible for the observed bidirectional effect. In the present study, we examined the molecular mechanism behind this phenomenon. We observed that the high inhibitory concentrations of TGF-beta1 induced a strong phosphorylation of SMAD 3 and also activated stress kinase-related transcription factors, namely c-Jun and ATF-2. On the other hand, low stimulatory concentrations acted in a SMAD 3-independent pathway and activated STAT proteins. Our results clearly show that differential activation of signal transduction pathways by TGF-beta1 as a function of its concentration underlies its bidirectional effect on hematopoietic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available