4.6 Article

Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach -: art. no. 165102

Journal

PHYSICAL REVIEW B
Volume 70, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.165102

Keywords

-

Ask authors/readers for more resources

The Anderson model of a twofold spin degenerate impurity level in the limit of infinite Coulomb repulsion, U-->infinity, coupled to one and two degenerate conduction bands or channels, is considered in pseudo-particle representation. We extend the conserving T-matrix approximation (CTMA), a general diagrammatic approximation scheme based on a fully renormalized computation of two-particle vertex functions in the spin and in the charge channel, to the calculation of thermodynamic and spectral properties. In the single-channel case, the CTMA yields in the Kondo regime a temperature independent Pauli spin susceptibility for temperatures below the Kondo temperature T-K and down to the lowest temperatures considered, reproducing the exact spin screening in the Fermi liquid state. The impurity spectral density appears to remain non-singular down to the lowest temperatures, in agreement with Fermi liquid behavior. However, the unitarity sum rule, which is crucial for an impurity solver like the CTMA to be applicable within dynamical mean field theories for strongly correlated lattice models, is overestimated at the lowest temperatures. We argue that this shortcoming may be due to numerical imprecision and discuss an appropriate scheme for its correction. In the two-channel case, the spectral density calculated within CTMA exhibits qualitatively the correct non-Fermi liquid behavior at low temperatures, i.e., a power law singularity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available