4.7 Article

An analytical model to predict dune erosion due to wave impact

Journal

COASTAL ENGINEERING
Volume 51, Issue 8-9, Pages 675-696

Publisher

ELSEVIER
DOI: 10.1016/j.coastaleng.2004.07.003

Keywords

dune erosion; analytical model; wave impact; large wave tank data; storm erosion; runup height; swash bore

Ask authors/readers for more resources

An analytical model is developed to calculate recession distance and eroded volume for coastal dunes during severe storms. The transport relationship used in the model is based on wave impact theory, where individual swash waves hitting the dune face induce the erosion. Combining this relationship with the sediment volume conservation equation describes the response of the dune to high waves and water levels. Four different data sets on dune erosion, originating from the laboratory and the field, were employed to validate the model and to determine the value of an empirical transport coefficient appearing in the analytical solutions. The time evolution of dune recession observed in the different data sets was well described by the model, but the empirical coefficient showed some variation between cases, especially for the field data. In practical applications of the model, it is recommended to use a range of coefficient values to include an uncertainty estimate of calculated quantities, such as recession distance and eroded volume. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available