4.8 Article

Development of an autocrine neuregulin signaling loop with malignant transformation of human breast epithelial cells

Journal

CANCER RESEARCH
Volume 64, Issue 19, Pages 7078-7085

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-04-1152

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [R01 NS45207] Funding Source: Medline

Ask authors/readers for more resources

Neuregulin (NRG) is a heparin-binding factor that activates members of the epidermal growth factor family of tyrosine kinase receptors including erbB2 that is overexpressed in more aggressive types of breast cancer. The exact role that NRG plays in breast cancer is complicated by the fact that NRG has been shown to have both proliferative and antiproliferative effects, depending on the breast cancer cell line used. Using an isogenic series of breast epithelial cell lines (MCF10A) ranging from benign to malignant, we found that the actions of NRG changed from antiproliferative to proliferative as the cells progress to cancer. This correlated with a progressive inability of NRG to down-regulate a group of proliferation genes identified previously using cDNA microarrays. As the cells progress to malignancy, they expressed higher levels of erbB2 and lower levels of erbB3 and secreted high levels of NRG into the culture media, resulting in high basal levels of erbB receptor phosphorylation. Disruption of this autocrine signaling loop by blocking ligand-induced receptor activation inhibited cancer cell proliferation. These results demonstrate that the transition of MCF10A cells from normal to premalignant to malignant correlates with the development of a constitutively active autocrine NRG signaling loop that promotes cell proliferation and suggest that disrupting this autocrine loop may provide an important therapeutic measure to control breast cancer cell growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available