4.6 Article

Single Mott transition in the multiorbital Hubbard model

Journal

PHYSICAL REVIEW B
Volume 70, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.165103

Keywords

-

Ask authors/readers for more resources

The Mott transition in a multiorbital Hubbard model involving subbands of different widths is studied within the dynamical mean-field theory. Using the iterated perturbation theory for the quantum impurity problem it is shown that at low temperatures interorbital Coulomb interactions give rise to a single first-order transition rather than a sequence of orbital selective transitions. Impurity calculations based on the Quantum Monte Carlo method confirm this qualitative behavior. Nevertheless, at finite temperatures, the degree of metallic or insulating behavior of the subbands differs greatly. Thus, on the metallic side of the transition, the narrow band can exhibit quasi-insulating features, whereas on the insulating side the wide band exhibits pronounced bad-metal behavior. This complexity might partly explain contradictory results between several previous works.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available