4.3 Article

Comparison of myelin, axon, lipid, and immunopathology in the central nervous system of differentially myelin-compromised mutant mice: a morphological and biochemical study

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 27, Issue 2, Pages 175-189

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2004.06.006

Keywords

-

Categories

Ask authors/readers for more resources

The present study was carried out to compare different myelin-compromised mouse mutants with regard to myelin morphology in relation to axon-, lipid-, and immunopathology as a function of age. Mouse mutants deficient in the myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) display subtle and severe myelin pathologies in the central nervous system (CNS), respectively. Animals doubly deficient in MAG and the neural cell adhesion molecule (NCAM) show defects similar to those present in MAG single mutants while mice deficient in MAG and the nonreceptor type tyrosine kinase Fyn are severely hypomyelinated, in addition to the MAG-specific myelin abnormalities. These mutant mice showed distinct myelin pathologies in different regions of the central nervous system and generally displayed a decrease in axonal integrity with age. Myelin pathology did not correlate locally with axon transection and with an involvement of the immune system as seen by numbers of CD3-positive lymphocytes and MAC-3-positive macrophages. Interestingly, the degree of these cellular abnormalities also did not correlate with abnormalities in levels of phospholipids, arachidonic acid, cholesterol, and apolipoprotein E (apoE). Moreover. these changes in lipid metabolism, including immune system-related arachidonic acid, preceded cellular pathology. The combined observations point to differences, but also similarities in the relation of myelin, axon, and immunopathology with genotype, and to a common aggravation of the phenotype with age. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available