4.8 Article

Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 23, Pages 12961-12971

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b02729

Keywords

polymer electrolyte; photopolymerization; ionic liquid; lithium battery; dye-sensitized solar cell; multipurpose materials

Ask authors/readers for more resources

Profoundly ion-conducting, self-standing, and tack-free ethylene oxide-based polymer electrolytes encompassing a room-temperature ionic liquid (RTIL) with specific amounts of lithium salt are successfully prepared via a rapid and easily upscalable process including a UV irradiation step. All prepared materials are thoroughly characterized in terms of their physical, chemical, and morphological properties and eventually galvanostatically cycled in lab-scale lithium batteries (LIBs) exploiting a novel direct polymerization procedure to get intimate electrode/electrolyte interfacial characteristics. The promising multipurpose characteristics of the newly elaborated materials are demonstrated by testing them in dye-sensitized solar cells (DSSCs), where the introduction of the iodine/iodide-based redox mediator in the polymer matrix assured the functioning of a lab-scale test cell with conversion efficiency exceeding 6% at 1 sun. The reported results enlighten the promising prospects of the material to be successfully implemented as stable, durable, and efficient electrolyte in next-generation energy conversion and storage devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available