4.5 Article

Morphologic, magnetic, and Mossbauer spectral properties of Fe75Co25 nanoparticles prepared by ultrasound-assisted electrochemistry

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 281, Issue 1, Pages 27-35

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2004.03.047

Keywords

iron-cobalt alloy; nanoparticles; Mossbauer spectroscopy; magnetic measurements

Ask authors/readers for more resources

Nanopowders of Fe75Co25 alloys have been prepared by ultrasound-assisted electrochemistry. Their composition, crystallographic structure, morphology, have been studied by X-ray diffraction, transmission electron microscopy, X-ray fluorescence, and high-energy electron diffraction. The nanopowders are found to present a composition well determined by the electrolyte bath composition, they show a bee structure. The iron and cobalt atoms exhibit a very homogeneous distribution in the particles. The magnetic properties of the nanopowders have been measured between 5 and 295 K with a vibrating sample magnetometer and their Mossbauer spectra have been obtained at 295 K. The saturation magnetization is characteristic of FeCo alloys. The magnetic behavior and transmission electron microscopy observations of the particles indicate strongly interacting particles with a radius of ca. 2-4 nm, particles which may form agglomerates of larger size. The measured average hyperfine field is situated at the maximum of the Slater-Pauling curve for the FeCo alloys. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available