4.4 Review

Interface-induced optical and transport phenomena in type II broken-gap single heterojunctions

Journal

SEMICONDUCTOR SCIENCE AND TECHNOLOGY
Volume 19, Issue 10, Pages R109-R128

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0268-1242/19/10/R03

Keywords

-

Ask authors/readers for more resources

This review deals with a study of optical and magnetotransport phenomena at a type II arsenide-antimonide heterojunction with a broken-gap alignment. A fundamental feature of this structure is partial overlapping of the InAs conduction band with the GaSb-rich solid solution valence band. in such a heterostructure, electrons and holes are spatially separated and localized in self-consistent quantum wells formed on both sides of the heterointerface. This leads to unusual tunnelling-assisted radiative recombination transitions and novel transport properties. Results of a pioneering study of interface-related luminescence in type II broken-gap GaInAsSb/InAs heterostructures, with a high quality abrupt heteroboundary, grown by the LPE method, are presented. The energy band diagram of the type II broken-gap GaInAsSb/InAs(GaSb) heterostructures and band overlapping control, depending on a doping level and epilayer composition of quaternary solid solution, are discussed. A 2D-electron channel with high Hall mobility at the p-GaInAsSb/p-InAs interface was found and examined. A great deal of attention is paid to quantum transport properties of the semimetal channel in a wide magnetic field range (up to 18 T) at low temperatures. A cyclotron resonance study was used to obtain data on the energy spectrum at the interface and to estimate effective masses for subbands in the semimetal channel. The intriguing behaviour of the 2D-electron system in the presence of localized holes in high magnetic fields and the first observation of integer quantum Hall effect plateaus on the type II single GaInAsSb/InAs heterointerface formed by LPE are demonstrated. A tunnelling-injection laser with high asymmetric band offset confinements based on the type II broken-gap heterojunction is considered. Applications of the interface-induced phenomena in luminescent and transport properties for the design of novel mid-IR optoelectronic devices and Hall sensors are briefly reviewed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available