4.5 Article

NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 91, Issue 2, Pages 462-470

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2004.02734.x

Keywords

long-term depression; long-term potentiation; protein synthesis; synaptic plasticity; translation

Funding

  1. NHLBI NIH HHS [T32 HL07676] Funding Source: Medline
  2. NINDS NIH HHS [NS34007] Funding Source: Medline

Ask authors/readers for more resources

Protein synthesis is essential for the stabilization of glutamate receptor-dependent forms of long-lasting hippocampal synaptic plasticity and for the consolidation of memory, but the signal transduction mechanisms that regulate translation factors during these processes are not well understood. As a first step towards understanding how translation is activated during synaptic plasticity, we investigated how the eukaryotic initiation factor 4E (eIF4E), a rate-limiting mRNA cap-binding protein, and its kinase, Mnk1, are regulated by protein kinase C (PKC), cAMP-dependent protein kinase (PKA) and N-methyl-D-aspartate (NMDA) receptor activation in hippocampal area CA1. We found that treatment of mouse hippocampal slices with either phorbol ester, to activate PKC, or forskolin, to activate PKA, resulted in activation of Mnk1 and increased eIF4E phosphorylation that was dependent on extracellular signal-regulated kinase (ERK). Similarly, brief treatment of hippocampal slices with NMDA resulted in activation of Mnk1 and increased phosphorylation of eIF4E. The NMDA-induced activation of Mnk1 and increased phosphorylation of eIF4E were dependent on PKA and ERK, but not PKC, and were present in synaptoneurosome preparations. Immunohistochemical analysis revealed that the PKA- and ERK-dependent increases in Mnk1 activation induced by NMDA also occured in dendrites. These findings identify a specific regulatory pathway that can couple NMDA receptor activation to translation initiation factors in the hippocampus, and may represent a mechanism for triggering dendritic protein synthesis during long-term potentiation and long-term memory formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available