4.7 Article

The dynamic turnover and functional roles of α-actinin in dendritic spines

Journal

NEUROPHARMACOLOGY
Volume 47, Issue 5, Pages 734-745

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2004.07.022

Keywords

alpha-actinin; dendritic spine; FRAP; time lapse imaging; actin cytoskeleton; filopodia; synapse

Ask authors/readers for more resources

Excitatory synapses are located on actin-rich protrusions known as dendritic spines. alpha-Actinin is an actin binding protein enriched in the postsynaptic density (PSD) of excitatory synapses. Because it also binds to NMDA receptors and other PSD components, alpha-actinin has been proposed to link NMDA receptors and the PSD to the underlying actin cytoskeleton of the dendritic spine. Although alpha-actinin has been implicated in modulation of NMDA receptor activity, the cell biological function of alpha-actinin in neurons is unknown. We report here that alpha-actinin is concentrated in spines. Both the actin binding domain and the spectrin repeat region (which interacts with NMDA receptors) of alpha-actinin2 are required for spine targeting. In live imaging experiments, Venus-tagged alpha-actinin2 in dendritic spines showed faster turnover than PSD-95, as determined by fluorescent recovery after photobleaching (FRAP), and individual spines often showed marked fluctuations in a-actinin content over a time-scale of minutes. Overexpression of alpha-actinin2 increased the length and density of dendritic protrusions in cultured hippocampal neurons, an effect that requires the actin binding domain and the spectrin repeats of alpha-actinin. These results suggest that ot-actinin regulates spine morphology and density. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available