4.5 Article

Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals

Journal

MOLECULAR MICROBIOLOGY
Volume 54, Issue 2, Pages 407-419

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2004.04310.x

Keywords

-

Funding

  1. NIAID NIH HHS [AI44975] Funding Source: Medline
  2. NIGMS NIH HHS [GM48707] Funding Source: Medline

Ask authors/readers for more resources

Cryptococcal infections are a global cause of significant morbidity and mortality. Recent studies support the hypothesis that virulence of Cryptococcus neoformans may have evolved via survival selection in environmental hosts, such as amoebae and free-living nematodes. We used killing of the nematode Caenorhabditis elegans by C. neoformans as an assay to screen a library of random C. neoformans insertion mutants. Of 350 mutants tested, seven were identified with attenuated virulence that persisted after crossing the mutation back into a wild-type strain. Genetic analysis of one strain revealed an insertion in a gene homologous to Saccharomyces cerevisiae KIN1, which encodes a serine/threonine protein kinase. C. neoformans kin1 mutants exhibited significant defects in virulence in murine inhalation and haematogenous infection models and displayed increased binding to alveolar and peritoneal macrophages. The kin1 mutant phenotypes were complemented by the wild-type KIN1 gene. These findings show that the C. neoformans Kin1 kinase homologue is required for full virulence in disparate hosts and that C. elegans can be used as a substitute host to identify novel factors involved in fungal pathogenesis in mammals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available