4.7 Article

Totally asymmetric simple exclusion process with Langmuir kinetics

Journal

PHYSICAL REVIEW E
Volume 70, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.046101

Keywords

-

Ask authors/readers for more resources

We discuss a class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting nonconserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe unexpected properties such as localized boundaries (domain walls) that separate coexisting regions of low and high density of particles (phase coexistence). A rich phase diagram, with high and low density phases, two and three phase coexistence regions, and a boundary independent Meissner phase is found. We rationalize the average density and current profiles obtained from simulations within a mean-field approach in the continuum limit. The ensuing analytic solution is expressed in terms of Lambert W functions. It allows one to fully describe the phase diagram and extract unusual mean-field exponents that characterize critical properties of the domain wall. Based on the same approach, we provide an explanation of the localization phenomenon. Finally, we elucidate phenomena that go beyond mean-field such as the scaling properties of the domain wall.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available