4.5 Article

No hemoglobin but NO:: the icefish (Chionodraco hamatus) heart as a paradigm

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 207, Issue 22, Pages 3855-3864

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.01180

Keywords

nitric oxide; heart; Antarctic teleost; icefish; Chionodraco hamatus; myocardial performance; nitric oxide synthase (NOS); immunocytochemistry

Categories

Ask authors/readers for more resources

The role of nitric oxide (NO) in cardio-vascular homeostasis is now known to include allosteric redox modulation of cell respiration. An interesting animal for the study of this wide-ranging influence of NO is the cold-adapted Antarctic icefish Chionodraco hamatus, which is characterised by evolutionary loss of hemoglobin and multiple cardio-circulatory and subcellular compensations for efficient oxygen delivery. Using an isolated, perfused working heart preparation of C hamatus, we show that both endogenous (L-arginine) and exogenous (SIN-1 in presence of SOD) NO-donors as well as the guanylate cyclase (GC) donor 8Br-cGMP elicit positive inotropism, while both nitric oxide synthase (NOS) and sGC inhibitors, i.e. L-NIO and ODQ, respectively, induce significant negative inotropic effects. These results therefore demonstrate that under basal working conditions the icefish heart is under the tonic influence of a NO-cGMP-mediated positive inotropism. We also show that the working heart, which has intracardiac NOS (shown by NADPH-diaphorase activity and immunolocalization), can produce and release NO, as measured by nitrite appearance in the cardiac effluent. These results indicate the presence of a functional NOS system in the icefish heart, possibly serving a paracrine/autocrine regulatory role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available