4.4 Article

The evolution of arthropod segmentation mechanisms

Journal

BIOESSAYS
Volume 26, Issue 10, Pages 1108-1116

Publisher

WILEY
DOI: 10.1002/bies.20097

Keywords

-

Ask authors/readers for more resources

The fruit fly, Drosophila melanogaster, patterns its segments rapidly and simultaneously, via a mechanism that relies on the ability of transcription factors to diffuse between blastoderm nuclei. Ancestral arthropods patterned posterior segments sequentially in a cellular environment, where free diffusion was likely to have been inhibited by the presence of cell membranes. Understanding how the Drosophila paradigm evolved is a problem that has interested evolutionary developmental biologists for some time. In this article, I review what is known about arthropod segmentation mechanisms, and present a model for the evolution of the Drosophila paradigm. The model predicts that the primary pair-rule genes of Drosophila ancestrally functioned within and/ or downstream of a Notch-dependent segmentation clock, their striped expression gradually coming under the control of gap genes as the number of segments patterned simultaneously in the anterior increased and the number patterned sequentially via a segmentation clock mechanism in the posterior correspondingly decreased. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available