4.7 Article Proceedings Paper

Cuyania, an exotic block to Gondwana: Review of a historical success and the present problems

Journal

GONDWANA RESEARCH
Volume 7, Issue 4, Pages 1009-1026

Publisher

ELSEVIER
DOI: 10.1016/S1342-937X(05)71081-9

Keywords

west Gondwana; Laurentia; Cuyania; accretion; Precordillera

Ask authors/readers for more resources

A review of the early history of the Cuyania terrane and the numerous pioneering works of the past century provides the present robust framework of evidence supporting a derivation from Laurentia, travel towards Gondwana as an isolated microcontinent, and final amalgamation to the protomargin of western Gondwana in Middle to Late Ordovician times. The major remaining uncertainties and inconsistencies, such as the time of deformation and collision with Gondwana, the lack of evidence of Famatinian-derived zircons, the effects of strike-slip displacements proposed along the suture, as well as the potential sutures defined by ophiolite assemblages, are discussed. The precise boundary along the northern and southern limits is not yet well defined. The most suitable hypothesis based on present data is that Cuyania originated as a conjugate margin of the Ouachita embayment, south of the Appalachian platform during Early Cambrian times. The subsequent travel toward the Gondwana protomargin is clearly depicted by the changing faunal assemblages in the carbonate platform. New geochemical and age data on K-bentonites presented by several authors reinforce the strong connection between Cuyania ash-fall tuffs and Famatina volcanics by 468-470 Ma, indicating Cuyania and Gondwana were in close proximity at that time. Extension related to flexural subsidence, preceded by the drowning of the carbonate platform in early Llanvirnian times, is recorded by abrupt facies changes in the sedimentary cover during late Llanvirnian and early Caradocian times. This episode marked the beginning of contact between Cuyania and Gondwana. The subsequent evolution of the foreland basin indicates that deformation lasted until latest Silurian-Early Devonian times. The time of collision is tracked by the cessation of arc-related magmatic activity in the upper plate (Gondwana protomargin), at about 465 Main western Sierras Pampeanas, and ages around 454 Ma corresponding to syncollisional and postcollisional magmatism. The age of the collision is also preserved in the lower plate (Cuyania), where both angular unconformities in the sedimentary cover and the ages of peak of regional metamorphism in the basement rocks point to 460 Ma as the most probable age for the beginning of the collision. Evidence from the upper plate is essentially identical with an age of 463 Ma. Thermal gradients along this suture vary from 13 degreesC/km in the lower plate, to 18 degreesC/km in the fore arc upper plate, reaching more than 30 degreesC/km along the Famatinian arc. Based on these data, a Llandelian-Caradocian age for the collision can be postulated on firm grounds. Deformation continued through most of the early Paleozoic until amalgamation of the Chilenia terrane by the Late Devonian.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available