4.3 Article

HPAF-II, a cell culture model to study pancreatic epithelial cell structure and function

Journal

PANCREAS
Volume 29, Issue 3, Pages E77-E83

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00006676-200410000-00016

Keywords

HPAF-II; pancreatic cancer; tight junction; adherens junction; desmosome; epithelial polarity

Funding

  1. NCI NIH HHS [T32CA09056, 1F31CA 93084-01] Funding Source: Medline
  2. NIDDK NIH HHS [DK56216] Funding Source: Medline

Ask authors/readers for more resources

Objectives: Epithelial cells have distinct apical and basolateral plasma membrane domains separated by tight junctions. This phenotype is essential for the directional transport functions of epithelial cells. Here we characterized a well-differentiated pancreatic epithelial cell line to establish a useful model for understanding the mechanisms involved in the regulation of junctional complexes, polarity, and disease processes in the pancreas. Methods: Immunofluorescence of cell junction marker proteins and electron microscopy were used to determine the presence of tight junctions, adherens junctions, and desmosomes. The functionality of tight junctions was tested by transepithelial resistance measurements and transepithelial permeability studies of nonionic molecules. Tight junction function in polarity was determined by laser scanning confocal microscopy. Results: Immunofluorescence analysis in HPAF-II cells revealed tight junction localization of ZO-1, occludin, and claudin-4; adherens junction localization of E-cadherin and beta-catenin; and desmosomal localization of desmocollin. Transmission electron microscopy showed the presence of tight junctions, adherens junctions, and desmosomes, and freeze-fracture electron microscopy revealed the presence of distinct anastomosing tight junction strands. Transepithelial electrical resistance and permeability measurements revealed functional tight junctions. In addition, 3-dimensional images of the monolayer generated by laser scanning confocal microscopy revealed that HPAF-II cells show polarity. Immunoblotting and RT-PCR analyses revealed high expression levels of E-cadherin and Na,K-ATPase beta-subunit but low levels of the transcription factor Snail in HPAF-II cells compared with MiaPaCa-2 cells. Conclusion: The HPAF-II cell line is a well-differentiated human pancreatic carcinoma cell line that should be useful as a model for studies aimed at understanding epithelial polarity, regulation of junctional complexes, and disease processes in pancreas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available