4.5 Article

aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin

Journal

MOLECULAR GENETICS AND GENOMICS
Volume 272, Issue 3, Pages 336-343

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-004-1061-1

Keywords

Drosophila melanogaster; P transposable element; Heterochromatin; RNA interference; aubergine

Ask authors/readers for more resources

Transposable P elements inserted in the heterochromatic Telomeric Associated Sequences on the X chromosome (1A site) of Drosophila melanogaster have a very strong capacity to elicit the P cytotype, a maternally transmitted condition which represses P element transposition and P-induced hybrid dysgenesis. This repressive capacity has previously been shown to be sensitive to mutant alleles of the gene Su(var)205, which encodes HP1 (Heterochromatin Protein 1), thus suggesting a role for chromatin structure in repression. Since an interaction between heterochromatin formation and RNA interference has been reported in various organisms, we tested the effect of mutant alleles of aubergine, a gene that has been shown to play a role in RNA interference in Drosophila, on the repressive properties of telomeric P elements. Seven out of the eight mutant alleles tested clearly impaired the repressive capacities of the two independent telomeric P insertions at 1A analyzed. P repression by P strains whose repressive capacities are not linked to the presence of P copies at 1A were previously found to be insensitive to Su(var)205; here, we show that they are also insensitive to aubergine mutations. These results strongly suggest that both RNA interference and heterochromatin structure are involved in the establishment of the P cytotype elicited by telomeric P elements, and reinforce the hypothesis that different mechanisms for repression of P elements exist which depend on the chromosomal location of the regulatory copies of P.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available