4.5 Article

Hierarchy of responses to resource pulses in and and semi-arid ecosystems

Journal

OECOLOGIA
Volume 141, Issue 2, Pages 211-220

Publisher

SPRINGER
DOI: 10.1007/s00442-004-1520-8

Keywords

climate change; ecosystem structure; precipitation thresholds; precipitation variability; rainfall size

Categories

Ask authors/readers for more resources

In arid/semi-arid ecosystems, biological resources, such as water, soil nutrients, and plant biomass, typically go through periods of high and low abundance. Short periods of high resource abundance are usually triggered by rainfall events, which, despite of the overall scarcity of rain, can saturate the resource demand of some biological processes for a time. This review develops the idea that there exists a hierarchy of soil moisture pulse events with a corresponding hierarchy of ecological responses, such that small pulses only trigger a small number of relatively minor ecological events, and larger pulses trigger a more inclusive set and some larger ecological events. This framework hinges on the observation that many biological state changes, where organisms transition from a state of lower to higher physiological activity, require a minimal triggering event size. Response thresholds are often determined by the ability of organisms to utilize soil moisture pulses of different infiltration depth or duration. For example, brief, shallow pulses can only affect surface dwelling organisms with fast response times and high tolerance for low resource levels, such as some species of the soil micro-fauna and -flora, while it takes more water and deeper infiltration to affect the physiology, growth or reproduction of higher plants. This review first discusses how precipitation, climate and site factors translate into soil moisture pulses of varying magnitude and duration. Next, the idea of the response hierarchy for ecosystem processes is developed, followed by an exploration of the possible evolutionary background for the existence of response thresholds to resource pulses. The review concludes with an outlook on global change: does the hierarchical view of precipitation effects in ecosystems provide new perspectives on the future of arid/semiarid lands?

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available