4.4 Article

Thermal postbuckling behavior of composite sandwich plates

Journal

JOURNAL OF ENGINEERING MECHANICS
Volume 130, Issue 10, Pages 1160-1167

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9399(2004)130:10(1160)

Keywords

postbuckling; thermal analysis; composite structures; sandwich panels; plates

Ask authors/readers for more resources

By considering the total transverse displacement of a sandwich plate as the sum of the displacement due to bending of the plate and that due to shear deformation of the core, a 72 degrees of freedom high precision high order triangular-plate element is developed for the thermal postbuckling analysis of rectangular composite sandwich plates. Due to an uneven thermal expansion coefficient in the two local material directions, the buckling mode of the plate can be changed from one mode to another as the fiber orientation or aspect ratio of the plate is varied. By examining the local minimum of total potential energy of each mode, a clear picture of buckle pattern change is presented. Numerical results show that for a sandwich plate with cross-ply laminated faces, buckle pattern change may occur when the plate has a long narrow shape. However, for sandwich plates with angle-ply laminated faces, the buckling mode is dependent on the fiber orientation and aspect ratio of the plate. The effect of temperature gradient on the postbuckling behavior of the sandwich plate is limited except for angle-ply laminated sandwich plates with fiber angle greater than 70degrees or less than 20degrees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available