4.5 Article

Retroviral delivery of GAD-IgG fusion construct induces tolerance and modulates diabetes:: a role for CD4+ regulatory T cells and TGF-β?

Journal

GENE THERAPY
Volume 11, Issue 20, Pages 1487-1496

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3302327

Keywords

immune tolerance; GAD-IgG fusion construct; diabetes; CD4(+) regulatory T cells; TGF-beta

Ask authors/readers for more resources

Previous studies have demonstrated that antigen-specific tolerance could be induced by lipopolysaccharide (LPS)stimulated B cells retrovirally transduced with an immunoglobulin-antigen ( or epitope-containing peptide) fusion construct. To investigate the mechanism of this gene therapy system, we now adapted this approach to immunotherapy of spontaneous diabetes in nonobese diabetic ( NOD) mice, a T-cell-mediated autoimmune disease triggered, in part, by a pathogenic response to glutamate decarboxylase ( GAD) 65. We demonstrate that LPS-stimulated splenocytes, retrovirally transfected with GAD-IgG fusion construct, induce a significant antigen-specific hyporesponsiveness at both cellular and humoral levels and reduce the incidence of diabetes in female NOD mice. Parallel with disease protection, we observed a prolonged increase of the numbers of CD4(+)CD25(+) T cells in the periphery of GAD-IgG-treated mice, compared to those treated with a control IgG vector, both in the prediabetic period and persisting even 8 months after gene therapy. This increase appeared to be induced by the repeated stimulation of the antigen in the periphery instead of a result of differentiation of T-cell precursor in the thymus. Moreover, CD4(+)CD25(+) T cells induced by GAD-IgG fusion construct were capable of suppressing the proliferative response of CD4(+)CD25(+) T cells in vitro; and ablation of the activity of CD4(+) CD25(+) T cells by blocking antibody against CD25 could reverse GAD-specific T-cell hyporesponsiveness. These results suggested that CD4(+) CD25(+) T-cell subset induced in GAD-IgG-treated NOD mice represented the regulatory or suppressive CD4(+)CD25(+) T cells (Treg) and might play an important role in the induction and maintenance of tolerance in NOD mice. Furthermore, the numbers of splenic CD4(+)CD62L(+) regulatory T cells in GAD-IgG-treated mice during the prediabetic period and serum TGF-beta levels in 34-38-week-old GAD-IgG-protected mice were also increased, compared to control IgG-treated ones. Therefore, we propose that the induction of tolerance and the prevention of diabetes incidence in NOD female mice induced by the GAD-IgG fusion construct may require CD4(+) regulatory T cells, and the possible mediation of TGF-beta.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available