4.7 Article

Prevention and reversal of renal injury by leptin in a new mouse model of diabetic nephropathy

Journal

FASEB JOURNAL
Volume 18, Issue 13, Pages 127-+

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.04-2183fje

Keywords

lipoatrophic diabetes; TGF-beta 1; podocytes; proteinuria; transgenic mice

Ask authors/readers for more resources

Diabetic nephropathy is the leading cause of end-stage renal disease, for which effective therapy to prevent the progression at advanced stages remains to be established. There is also a long debate whether diabetic glomerular injury is reversible or not. Lipoatrophic diabetes, a syndrome caused by paucity of adipose tissue, is characterized by severe insulin resistance, dyslipidemia, and fatty liver. Here, we show that a genetic model of lipoatrophic diabetes (A-ZIP/F-1 mice) manifests a typical renal injury observed in human diabetic nephropathy that is associated with glomerular hypertrophy, diffuse and pronounced mesangial widening, accumulation of extracellular matrix proteins, podocyte damage, and overt proteinuria. By crossing A-ZIP/F-1 mice with transgenic mice overexpressing an adipocyte-derived hormone leptin, we also reveal that leptin completely prevents the development of hyperglycemia and nephropathy in A-ZIP/F-1 mice. Furthermore, continuous leptin administration to A-ZIP/F-1 mice by minipump beginning at 40 weeks of age significantly alleviates the glomerular injury and proteinuria. These findings demonstrate the therapeutic usefulness of leptin at least for a certain type of diabetic nephropathy. The model presented here will serve as a novel tool to analyze the molecular mechanism underlying not only the progression but also the regression of diabetic nephropathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available