4.1 Article

Bovine serum albumin adsorption on passivated porous silicon layers

Journal

CANADIAN JOURNAL OF CHEMISTRY
Volume 82, Issue 10, Pages 1545-1553

Publisher

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/V04-129

Keywords

ellipsometry; porous silicon; protein adsorption; surface passivation

Ask authors/readers for more resources

Hydrogen-terminated porous silicon (pSi-H) films were fabricated through electrochemical anodization of crystalline silicon in hydrofluoric-acid-based solutions. The pSi-H surface was chemically functionalized by thermal reaction with undecylenic acid to produce an organic monolayer covalently attached to the silicon surface through Si-C bonds and bearing an acid terminal group. Bovine serum albumin (BSA) was adsorbed onto such surface-modified pSi structures. The resulting surfaces were characterized using scanning electron microscopy (SEM), reflection FT-IR spectroscopy, and ellipsometry. SEM showed that the porous films were damaged and partially lifted off the silicon substrate after a prolonged BSA adsorption. Ellipsometry analysis revealed that the BSA penetrated similar to1.3 mum into the porous structure. The film damage is likely a result of BSA anchoring itself tightly through strong electrostatic interaction with the acid-covered Si sidewalls. A change in surface tension during BSA film formation then causes the pSi layer to buckle and lift off the underlying Si substrate. FT-IR results from the undecylenic-acid-modified pSi surfaces before and after BSA adsorption showed the presence of strong characteristic amide I, II, and III vibrational bands after BSA adsorption. The surface properties of the pSi matrix and its interactions with BSA are examined in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available