4.8 Article

ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining

Journal

CANCER RESEARCH
Volume 64, Issue 19, Pages 7139-7143

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-04-1289

Keywords

-

Categories

Funding

  1. NCI NIH HHS [P30-CA56036, T32-CA09137] Funding Source: Medline

Ask authors/readers for more resources

ATR is one of the most important checkpoint proteins in mammalian cells responding to DNA damage. Cells defective in normal ATR activity are sensitive to ionizing radiation (IR). The mechanism by which ATR protects the cells from IR-induced killing remains unclear. DNA double-strand breaks (DSBs) induced by IR are critical lesions for cell survival. Two major DNA DSB repair pathways exist in mammalian cells: homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). We show that the doxycycline (dox)-induced ATR kinase dead (ATRkd) cells have the similar inductions and rejoining rates of DNA DSBs compared with cells without dox induction, although the dox-induced ATRkd cells are more sensitive to IR and have the deficient S and G(2) checkpoints. We also show that the dox-induced ATRkd cells have a lower HRR efficiency compared with the cells without dox induction. These results indicate that the effects of ATR on cell radiosensitivity are independent of NHEJ but are linked to HRR that may be affected by the deficient S and G(2) checkpoints.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available