4.6 Article

Another way to approach zero entropy for a finite system of atoms

Journal

PHYSICAL REVIEW A
Volume 70, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.70.040302

Keywords

-

Ask authors/readers for more resources

We propose a way to manifestly reduce the entropy of a finite system of atoms to arbitrarily small values. First, the locations of vacancies of laser-cooled atoms in a deep optical lattice are measured. Then, the distribution is efficiently compacted using a combination of site-specific atomic state nips and state-sensitive lattice site translations. In the final state, the central region of the lattice has exactly one atom per site in its vibrational ground state. This is a good initial state for a quantum computer. The process can be understood to be an experimentally viable Maxwell demon with a memory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available