4.7 Article

Modeling directional brightness temperature over a maize canopy in row structure

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 42, Issue 10, Pages 2290-2304

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2004.834196

Keywords

directional brightness temperature (DBT); geometric optical and radiative transfer (GORT) model; maize canopy; row structure

Ask authors/readers for more resources

A study on modeling the variations of directional brightness temperature (DBT) for row-structure crops was carried out with the images captured by a large-aperture thermal infrared camera over a maize canopy. The model assumes that the DBT is a function of target component brightness temperatures and their directional fractions. The canopy has three brightness temperature components: the sunlit soil, the shaded soil, and the vegetation. Their fractions in the scene depend on the sun-view geometry and the distributions of gaps within and between plant rows. To describe canopy geometrical features, a series of porous hedgerows with a rectangular cross section is used. The directional variations of gap fractions are described by the Kuusk function. The model demonstrated how the features of DBT depend on the sun-view geometry, canopy geometrical structure, and component brightness temperatures. In the simulation of DBT over a middle-density canopy near the local noontime, the results revealed an evident row-direction-oriented hot stripe in DBT polar maps, where the hot spot appeared along the sun direction. The sensitivities of the model to the input parameters were teste. Further validation demonstrated a close correlation between predicted DBT and field observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available