4.2 Article

Overexpression of human transforming growth factor-β1 using a recombinant CHO cell expression system

Journal

PROTEIN EXPRESSION AND PURIFICATION
Volume 37, Issue 2, Pages 265-272

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pep.2003.06.001

Keywords

TGF-beta 1; LAP; LTBP; Chinese hamster ovary cell expression; protein purification

Ask authors/readers for more resources

Transforming growth factor-beta1 (TGF-beta1) is secreted by most cells as a high molecular weight latent complex, which consists of latent TGF-beta1 disulfide bonded to latent TGF-beta1-binding protein (LTBP). Current recombinant expression systems yield less than 1-2 mg of the mature TGF-beta1 per liter of cell culture medium. In an effort to produce large quantities of the recombinant cytokine for structural studies, we have constructed a mammalian expression system based on a modified pcDNA3.1(+) vector with a glutamine synthetase gene inserted for gene amplification. The leader peptide of TGF-beta1 was replaced with that of rat serum albumin, and an eight-histidine tag was inserted immediately after the leader sequence to facilitate protein purification. In addition, Cys 33 of TGF-beta1, which forms a disulfide bond with LTBP, was replaced by a serine residue. The resulting expression construct produced a stable clone expressing 30 mg of mature TGF-beta1 per liter of spent medium. Purified TGF-beta1 bound with high affinity to its type 11 receptor with a solution dissociation constant of similar to70 nM, and was fully active in both a Mv1Lu cell growth inhibition assay and in a PAI-1 luciferase reporter assay. Owing to similarities in the synthesis, secretion, and structure of TGF-beta family members, this recombinant expression system may also be applied to the overexpression of other TGF-beta isomers and even to members of the TGF-beta superfamily to facilitate their preparation. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available