4.8 Article

Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0403174101

Keywords

-

Ask authors/readers for more resources

Transcription and mRNA processing are regulated by phosphorylation and dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II, which consists of tandem repeats of a (YSPTSPS7)-S-1-P-2-T-3-S-4-P-5-S-6 heptapeptide. Previous studies showed that members of the plant CTD phosphatase-like (CPL) protein family differentially regulate osmotic stress-responsive and abscisic acid-responsive transcription in Arabidopsis thaliana. Here we report that AtCPL1 and AtCPL2 specifically dephosphorylate Ser-5 of the CTD heptad in Arabidopsis RNA polymerase II, but not Ser-2. An N-terminal catalytic domain of CPL1, which suffices for CTD Ser-5 phosphatase activity in vitro, includes a signature DXDXT acylphosphatase motif, but lacks a breast cancer 1 CTD, which is an essential component of the fungal and metazoan Fcp1 CTD phosphatase enzymes. The CTD of CPL1, which contains two putative double-stranded RNA binding motifs, is essential for the in vivo function of CPL1 and includes a C-terminal 23-aa signal responsible for its nuclear targeting. CPL2 has a similar domain structure but contains only one double-stranded RNA binding motif. Combining mutant alleles of CPL1 and CPL2 causes synthetic lethality of the male but not the female gametes. These results indicate that CPL1 and CPL2 exemplify a unique family of CTD Ser-5-specific phosphatases with an essential role in plant growth and development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available