4.8 Article

Controlling the dynamics of a single atom in lateral atom manipulation

Journal

SCIENCE
Volume 306, Issue 5694, Pages 242-247

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1102370

Keywords

-

Ask authors/readers for more resources

We studied the dynamics of a single cobalt (Co) atom during lateral manipulation on a copper (111) surface in a low-temperature scanning tunneling microscope. The Co binding site locations were revealed in a detailed image that resulted from lateral Co atom motion within the trapping potential of the scanning tip. Random telegraph noise, corresponding to the Co atom switching between hexagonal close-packed (hcp) and face-centered cubic (fcc) sites, was seen when the tip was used to try to position the Co atom over the higher energy hcp site. Varying the probe tip height modified the normal copper (111) potential landscape and allowed the residence time of the Co atom in these sites to be varied. At low tunneling voltages (less than similar to5 millielectron volts), the transfer rate between sites was independent of tunneling voltage, current, and temperature. At higher voltages, the transfer rate exhibited a strong dependence on tunneling voltage, indicative of vibrational heating by inelastic electron scattering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available