4.6 Article

CA repeats in the 3′-untranslated region of bcl-2 mRNA mediate constitutive decay of bcl-2 mRNA

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 41, Pages 42758-42764

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M407357200

Keywords

-

Ask authors/readers for more resources

An AU-rich element ( ARE) in the 3'-untranslated region (UTR) of bcl-2 mRNA has previously been shown to be responsible for destabilizing bcl-2 mRNA during apoptosis through increasing AUF1 binding. In the present study, we investigated the effect of the region upstream of the ARE on bcl-2 mRNA stability using serial deletion constructs of the 3'-UTR of bcl-2. Deletion of 30 nucleotides mostly consisting of the CA repeats, located upstream of the ARE, resulted in the stabilization of bcl-2 mRNA abundance, in the absence or presence of the ARE. The specificity of the CA repeats in terms of destabilizing bcl-2 mRNA was proven by the substituting the CA repeats with other alternative repeats of purine/ pyriminine, but this had no effect on the stability of bcl-2 mRNA. CA repeats alone, however, failed to confer instability to bcl-2 or gfp reporter mRNAs, indicating a requirement for additional sequences in the upstream region of the 3'-UTR. Serial deletion and replacement of a part of the region upstream of the CA repeats revealed that the entire 131-nucleotide upstream region is an essential prerequisite for the CA repeat-dependent destabilization of bcl-2 mRNA. Unlike the ARE, CA repeat-mediated degradation of bcl-2 mRNA was not accelerated upon apoptotic stimulus. Moreover, the upstream sequences and CA repeats are conserved among mammals. Collectively, CA repeats contribute to the constitutive decay of bcl-2 mRNA in the steady states, thereby maintaining appropriate bcl-2 levels in mammalian cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available