4.6 Article

Electrokinetic effects on detection time of nanowire biosensor

Journal

APPLIED PHYSICS LETTERS
Volume 100, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3701721

Keywords

-

Funding

  1. Lehigh Faculty Research Grant
  2. National Science Foundation [CBET-1067502, CBET-1113040, CBET-1064574, ECCS-0955027]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1113040, 1064574] Funding Source: National Science Foundation
  5. Directorate For Engineering
  6. Div Of Electrical, Commun & Cyber Sys [0955027] Funding Source: National Science Foundation
  7. Div Of Industrial Innovation & Partnersh
  8. Directorate For Engineering [1127761] Funding Source: National Science Foundation

Ask authors/readers for more resources

We develop a multiphysics model to study the contribution of electrokinetics on the biomolecular detection process and provide a physical explanation of the two to three orders of magnitude difference in detection time between experimental results and theoretical predications at ultralow concentration. The electrokinetic effects, including electrophoretic force and electroosmotic flow, have been systematically studied under various sensor design and test conditions. In a typical single nanowire-based sensor, it is found that electrokinetic effects could result in a reduction of detection time over 90 times, compared with that induced by pure biomolecular diffusion. The detection time difference is further enhanced by increasing the applied gate voltage or the number of nanowires. It is proposed that accelerated biomolecular detection at ultralow concentration could be achieved by appropriate combinations of electrokinetic effects and nanowire sensor design. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701721]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available