4.8 Article

Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis

Journal

CIRCULATION
Volume 110, Issue 15, Pages 2216-2219

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.0000136814.87170.B1

Keywords

plasma; cells; muscle, smooth; electrophoresis

Ask authors/readers for more resources

Background-We hypothesized that normal and pathological vessel walls display a differential pattern of secreted proteins. We have recently set up the conditions for comparing secretomes from carotid atherosclerotic plaques and control arteries using a proteomic approach to assess whether differentially secreted proteins could represent markers for atherosclerosis. Methods and Results-Normal endartery segments and different regions of endarterectomy pieces (noncomplicated/complicated plaques) were incubated in protein-free medium, and the released proteins were analyzed by 2D electrophoresis (2-DE). Among the differently secreted proteins, we have identified heat shock protein-27 (HSP27). Surprisingly, compared with control arteries, HSP27 release was drastically decreased in atherosclerotic plaques and barely detectable in complicated plaque supernatants. HSP27 was expressed primarily by intact vascular cells of normal arteries and carotid plaques ( immunohistochemistry). Plasma detection of soluble HSP27 showed that circulating HSP27 levels are significantly decreased in the blood of patients with carotid stenosis relative to healthy subjects (0.19 [0.1 to 1.95] versus 83 [71.8 to 87.8]) ng/mL, P<0.0001). Conclusions-HSP27 secretion is decreased in complicated atherosclerotic plaques, and sHSP27 plasma levels are decreased in atherosclerotic patients compared with healthy subjects. Plasma sHSP27 levels could be a potential index of atherosclerosis, although further validation is needed in large patient cohorts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available