4.4 Article

Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor

Journal

BIOCHEMISTRY
Volume 43, Issue 40, Pages 12945-12954

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0492051

Keywords

-

Funding

  1. NCRR NIH HHS [1-P20-RR017716-01] Funding Source: Medline

Ask authors/readers for more resources

Human adenosine A(2)a receptor is a member of the G-protein-coupled receptor (GPCR) superfamily of seven-helix transmembrane (TM) proteins. To test general models for membrane-protein folding and to identify specific features of folding and assembly for this representative member of an important and poorly understood class of proteins, we synthesized peptides corresponding to its seven TM domains. We assessed the ability of the peptides to insert into micelles and vesicles and measured secondary structure for each peptide in aqueous and membrane-mimetic environments. CD spectra indicate that each of the seven TM peptides form thermally stable, independent alpha-helical structures in both micelles and vesicles. The helical content of the peptides depends on the nature of the membrane-mimetic environment. Four of the peptides (TM3, TM4, TM5, and TM7) exhibit very high-helical structure, near the predicted maximum for their TM segments. The TM1 peptide also adopts relatively high a-helical structures. In contrast, two of peptides, TM2 and TM6, display low alpha helicity. Similarly, the ability of the peptides to insert into membrane-mimetic environments, assayed by intrinsic tryptophan fluorescence and fluorescence quenching, varied markedly. Most peptides exhibit higher alpha helicity in anionic sodium dodecyl sulfate than in neutral dodecyl-beta-D-maltoside micelles, and TM2 was disordered in zwiterionic DMPC but was alpha-helical in negatively charged DMPC/DMPG vesicles. These findings strongly suggest that electrostatic interactions between lipids and peptides control the insertion of the peptides and may be involved in membrane-protein-folding events. The measured helical content of these TM domains does not correlate with the predicted helicity based on amino acid sequence, pointing out that, while hydrophobic interactions can be a major determinant for folding of TM peptides, other factors, such as electrostatic interactions or helix-helix interactions, may play significant roles for specific TM domains. Our results represent a comprehensive analysis of helical propensities for a human GPCR and support models for membrane-protein folding in which interactions between TM domains are required for proper insertion and folding of some TM helix domains. The tendency of some peptides to self-associate, especially in aqueous environments, underscores the need to prevent improper interactions during folding and refolding of membrane proteins in vivo and in vitro.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available