4.6 Article

Analysis of the ultraviolet absorption cross sections of six isotopically substituted nitrous oxide species using 3D wave packet propagation

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 108, Issue 41, Pages 8905-8913

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp048853r

Keywords

-

Ask authors/readers for more resources

The ultraviolet absorption cross sections of six isotopically substituted nitrous oxide species ((NNO)-N-14-N-14-O-16, N-14(14) (NO)-O-17,(NNO)-N-14-N-14-O-18,(NNO)-N-14-N-15-O-16,(NNO)-N-15-N-14-O-16, and (NNO)-N-15-N-15-O-16) were computed using the wave packet propagation technique to explore the influence of excited-state dynamics, transition dipole surface, and initial vibrational state. Three-dimensional potential energy surfaces for the electronic states of N2O related to the experimentally observed photoabsorption between 170 and 220 nm were calculated using the ab initio molecular orbital configuration interaction method. The transition dipole moment surfaces between these states were also calculated. Numerous wave packet simulations were carried out and used to calculate the temperature-dependent photodissociation cross sections of the six isotopically substituted species. The photolytic isotopic fractionation constants determined using the calculated cross sections are in good agreement with recent experiments. The results show that, in addition to the effect of the changed shape of the ground-state vibrational wave function with isotopic substitution, photodissociation dynamics play a central role in determining isotopic fractionation constants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available